Computer Science
CS 7150: Deep Learning
Lecture - 4 credits
ND
EI
IC
FQ
SI
AD
DD
ER
WF
WD
WI
EX
CE
- Introduces deep learning, including the statistical learning framework, empirical risk minimization, loss function selection, fully connected layers, convolutional layers, pooling layers, batch normalization, multilayer perceptrons, convolutional neural networks, autoencoders, U-nets, residual networks, gradient descent, stochastic gradient descent, backpropagation, autograd, visualization of neural network features, robustness and adversarial examples, interpretability, continual learning, and applications in computer vision and natural language processing.
- Assumes students already have a basic knowledge of machine learning, optimization, linear algebra, and statistics.
Introduces deep learning, including the statistical learning framework, empirical risk minimization, loss function selection, fully connected layers, convolutional layers, pooling layers, batch normalization, multilayer perceptrons, convolutional neural networks, autoencoders, U-nets, residual networks, gradient descent, stochastic gradient descent, backpropagation, autograd, visualization of neural network features, robustness and adversarial examples, interpretability, continual learning, and applications in computer vision and natural language processing. Show more.